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ON SOME NEW SOLUTIONS OBTAINABLE BY MEANS OF INVARIANT TRANSFORMATIONS
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With reference to the example of the equations of monoenergetic
nonrelativistic beam of particles of like charge, it is shown how new
noninvariant solutions can be obtained by means of invariant transfor~
mations (§1). The conditions under which Lorentz forces can be ig~
nored and the electric field considered a potential field are obtained
for nonstationary flows. Solutions that describe the passage through a
plane diode of high-frequency current from the emitter in a high-
frequency electric field for an arbitrary relationship between the con-
stant component of the coilector potential and the amplitude of the
ac voltage across it are derived (§2). Multivelocity (the velocity vec-
tor is a multivalued function) beams, and aleso electrostatic beams that
can be described by Viasov's equations are examined (§3).

Given a system of differential equations (S) for m = 1 unknown
functions uk (k=1,...,m)oef n = m = 1 independent variables
xi(i=1,...,n = m). The set of values (x, u) is considered as the set
of coordinates of a point in n~dimensional space E,. Any solution of
this systemn u = u(x) defines some manifold in Eq. Al possible solu-
tions of (S) specify in E;; some set M. Any invariant transformation of
system (S) has the property that it does not lead out of M. In a num-
ber of cases, this makes it possible to obtain new solutions by means
of invariant transformations, no limirations being imposed on the so-
lutions transformed. For a given system (S), all transformations that
preserve (S and form a continuous group, can be obtained by the
method developed by L. V. Ovsyannikov [1-3]. Note that new solu-
tiens arise only when the principal group G of system (S) allows other
than merely elementary transformations: magnifications, rotations,
and translations are, as a rule, useless. *

Below, solutions of the equations of 2 monoenergetic nonrelativis-

tic beam of particles of like charge are examined as an example [6-8].

1. EXAMPLES OF NEW NONINVARIANT SOLUTIONS

In [8]it was shown that, besides a number of ele-
mentary transformations, the equations of a non-
stationary beam in the absence of an external mag-
netic field admit the following independent transfor-
mations:
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* For example, the new solutions of the equations
of motion of a compressible inviscid fluid obtained by
A. A. Nikol'skii [4-5] are linked with the presence of
a discrete group of transformations
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formed by the elements of the continous group found
in [3].

Here, t is time; x, y, z are Cartesian coordi-
nates; u, v, w are the velocity components in these
coordinates; ¢ is the scalar potential; y is the space-
charge density; f, g, h are arbitrary functions of
time; «, B, T are the parameters of the continuous
groups of transformations; the dimensionless vari-
ables used in [6-8] are again employed.

Transformations (1.1) can be represented as a
single formula
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It was shown in [6, 7] that all known solutions of
the equations of a stationary beam are invariant
solutions, with the exception of a few solutions that
do not satisfy the conditions of thermionic emission
[9-14]. Of these five noninvariant solutions, three
are electrostatic [9-11]. The system of eguations
of a regular [15] beam can be reduced to a single
nonlinear fourth-order differential equation in W—
the action relative to the particle mass [16].

1% In [9] Meltzer described plane flow aleng hy-
perbolic trajectories with constant space-charge
density
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The first of these flows will be regular. Using
transformation (1.2}, we obtain the nonstationary
solution corresponding to (1.3)

weate b f O] —7 (@),
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At the initial moment t = 0, at x4 (0) = yp(0) =0,
the circles R = const will be equipotential curves.
Subsequently, this family of curves is displaced
according to the law

zo="1a* (" —a¥),  ya=/sa’(g"— a%g)-

Here, x4, yy are the coordinates of the center of
the family of circles. Because of the arbitrariness
of the functions f(t) and g (t), the particle trajec-
tories may also be arbitrary. It is apparent that
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f({)=achat +-Bshat, g(t)=1tchat 4-dshat

(¢, B, 7,6 are arbitrary constants),

In this case, the particle trajectories are given
by the expressions '

£=1/yB—a)e ot + Ade,

y'= — 1, (7 + 8) 3! 4~ Bemot (A, B = const),

It is interesting that solution (1.3) is invariant
relative to transformation (1.2)if f ~ !, g ~ e—at,
The functions ¥ (t) and g (t) can be selected so

that the set of curves ¢ = const with center at x,

Yo executes a finite motion. For example, when u =
=x+sint, v=—y +sint, the center x;, y; moves
about the circle x}+ y,% = 1/8 with constant velocity
and the trajectories will be nonmonotonic curves

z=—1/y(sint + cost) + Ae!, y=1/,(sint—cost) 4 Be,

Similar results are easily obtained for (1.4), and'
also for the solution that extends (1.3) to the three-
dimensional case [10].
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2°. The plane periodic flow studied in [11] is de-
fined by the formulas
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The second equation in (1.6) is the equation of the
trajectories.

Note, first of all, that, besides (1.6), there is an
analogous stationary solution with arbitrary period.
It can be obtained from (1.6) by an extension trans-
formation with the infinitesmal operator :
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and is specified by the expression
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If we apply transformation (1.2) to (1.7), we have
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By selecting periodic functions as f(t), we obtain
a solution that is periodic not only in space but also
in time.
2. NONSTATIONARY PROCESSES IN A PLANE DIODE

All the essentially different invariant solutions
of a stationary beam were constructed in I6, 7.
When H = 0 each of these solutions can be subjected
to transformation (1.2). As a result, a nonstationary
image of the corresponding stationary flow is obtain-
ed. It should be noted that these solutions, which are
similar to the H-solutions of the equations of a sta-
tionary beam, are not similar to any of the non-
stationary invariant solutions constructed in I8}, i.e.,
they cannot be obtained from them by means of
transformations of the principal group G¢ of equa-
tions of the nonstationary beam. In the study of non-
stationary flows, therefore, the examination of such
solutions is of interest. The solutions corresponding
to one-dimensional flow between parallel planes
admit a particularly simple interpretation [17-20].
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Let us dwell in more detail on the solution ob-
tained using transformation (1.2) from the Child-
Langmuir solution {17, 18], which describes a
plane diode under total space charge conditions.
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Let us introduce the dimensionless variables t°,
x°% u® ¢° p° j°defined by the formulas

= (‘8’:'1"0)‘/"0’ ‘P=(g;"%a“)v'\v°. p= (ﬁ::';a )",

T = az°,

u = (18anjoa®)u®,  j=ju° (n=|el/m)-(2.1)

The values that determine the Child-Langmuir
solution have been selected as characteristic quan-
tities: a is the interelectrode distance; j, is the
emission-current density; the potential is referred
to the collector potential that ensures a curren j, at
distance @ between the electrodes, etc.

In these variables, the Child-Langmuir solution
has the form
(P°== (xo)‘/l' u® = (mO)'/i’ pe — (zc)"ll, ]~o =1, (2‘2)

Omitting the dimensionless-value symbol and ap-
plying transformation (1.2) to (2.2), we have

u=[z+ fOI"—f(t), 9=lz+fO)"—  O)xz—1f ()",

p=le+/O1" i=1—f@+/OT" (2.3)
The obtained solution (2.3) describes certain

processes in a plane diode 0= x = 1. The function

J (t) can be selected so that the collector potential

Q=+ H"—frer (2.4)

is a periodic function of time (subscripts 1 and 2 re-
fer to emitter and collector, respectively). It should
be noted that f(t) is arbitrary with accuracy to the
correctness of the initial equations [8]. With the in-
tention of examining rapidly oscillating solutions of
the form of (2.3), we obtain bounds that define the
domain of applicability of the equations of a non-
stationary beam used in [8].
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Let the electric field on the collector of the plane
diode be given by the expression

E.(a) = E, + A sin wt.
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The characteristic value of the space-charge

density p« is found from the equation
div E = 4np, p, = (Ey + A) [ 4na.

If it is considered that, in the case in question,
displacement currents play no less a role than con-
vection currents and that the aim is to obtain con-
ditions under which the flow is close to one-dimen-
sional, then given one more Maxwell equation we can
determine the characteristic value of the magnetic-
field strength Hx

1 oK | 4n
rot H = —c-a—t—"*{""c—pvq

wb - Ve b
Ho=2 4= (Eot H2 L.
Here, b is the transverse dimension of the beam.
The equations of motion of a charged particle

ay , 1

make it possible to establish conditions under which
the Lorentz forces are negligible as compared with
the electric field forces

wbV,
c?

A<E+ 4, (2V1<t.

Hence, we obtain the limitations on the frequency
w and the relative beam dimensions b/a

¢z By | b ¢ \2
m<m(f+1), ?<(V:) ) (2.5)

The second condition of (2.5) agrees (with accuras
cy to a constant factor that is not significant in order
of magnitude under the bounds) with the condition

established in [21, 22] for stationary nonrelativistic
flows.
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For an electron beam at b ~1 ¢m, V, ~10% cm/sec, Ey ~A, i
~10 ma/em®, we find that the frequency and longitudinal dimensions
must satisfy the inequalities

© < 10"% Hy a>10"% cm

In dimensionless variables (2.1), we have w® « 10%, The dimen-
sionless frequency w* ~1 corresponds to w ~10% ¢ps.

Thus, when inequalities (2.5) are fulfilled, it may be assumed that
E= V.

Figure 1shows how u, ¢, and j vary with time when f = 2 +sin t
at emitter and collector (w®= 1). In this case function (2.4) is approx-
imated by the expression ¢, = 1.24 sin t + 1.8, In the first half-cycle,
wq and (2.4) agree, for all practical purposes; in the second half-
cycle, the maximum difference in amplitude is not over 3% . Of
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course, when ¢y = asin t + B and for any given ¢, (t), the problem can
be solved accurately, but this requires numerical integration of Eq.
(2.4), or a more complicated equation, if we start with a stationary
solution with arbitrary conditions on the emitter [19, 20]. Figure 2
shows the potential distribution at certain fixed moments in time.
When f = sin t, the right and left planes emit alternately (Fig. 3). At
the ends and in the middle of the interval 0 =<t = 2, 8u;/0t, not the
total velocity derivative, increases without bound. The fact that the
convection-current density goes to infinity at certain moments of time
does not spoil the solution, since the current from a finite surface re~
mains finite over a finite time interval

t i .
J = \‘]'di = S [t —cos (x~-sin E)"/’]daz

0 [

=t4+3 [x'/s — (z + sin t)'/s] .

A solution of the form of (2.3) can describe the
oscillatory conditions in a plane diode with nonuni-
form space-charge distribution, which cannot be
obtained by construction of invariant nonstationary
flows [8].

Note that an analytic solution of the problem of
the behavior of a single electron in a high-frequency
field is known [23]. The equations of a radio-fre-
quency diode under total space charge conditions
were numerically integrated in [24].

Nonstationary analytic solutions that correspond
to annular electrostatic beams can be written with-
out difficulty [25, 26]. However, they do not permit
such a simple interpretation as do the flows ex-
amined above. For example, for the transform

Qo llr - @RI =R ) g (9]

the zero equipotential at the initial moment of time
when 1 (0) = f”(o) = g(0) = g” (0) = 0 will be a circle
of infinitely large radius, but subsequently in the
noninertial frame of reference X =x + f{t), Y=y +
+ g (t), it has the form shown in Fig. 4 and is de-

fined by the formulas

Rfese(p S A= G e b

Here, R, y are polar coordinates in the system
X, Y. Motion of the equipotential surfaces is ac-~
companied by their deformation.

§3. MULTIVELOCITY BEAMS AND BEAMS DEFINED BY VLASOV'S
EQUATIONS

Above we examined solutions with a single-valued velocity vector.
A multivelocity beam of charged particles with the same value and
sign of the specific charge 0, for which V is an s-valued function, is
formed by a finite number s of elementary monoenergetic beams. It
is therefore described by a system of equations of a monoenergetic
beam [6-8], the only difference being that the equation of current
conservation and the boundary conditions must be written out for each
of the s beams, while Zp(g), where ps) is the density of the s~th ele-
mentary beam, should be used as the space-charge density p in de-
termining the potential.

From the above, it follows that the equations of a multivelocity
beam admit transormations (1.2). By using these, we can construct
some nonstationary transform in accordance with any multivelocity
stationary solution.

It is known [19] that in a plane diode with emission from both
electrodes (current densities j; and j,, respectively) when the velocity
is two-valued only with respect to direction, it is possible to get the
same sets of conditions as in the case of emission from one plane with
current density jp = j; + ;. It is therefore not difficult to construct a
nonstationary solution with high-frequency currents from both planes
that corresponds to (2. 3). In the general case, when the velocity is
two-valued with respect to magnitude as well as direction, the solu-
tion of the equations of the beam is expressed in terms of elliptic
integrals. A nonmstationary solution can be constructed in this case, too.

Transformations of the form of (1.2) preserve the equations of a
multivelocity beam with any, arbitrarily large numbers of elementary
monoenergetic beams. It is natural to expect that this property is also
preserved when s = «, i.e., on going over to a description by means
of the distribution function F (r, V). It is easy to see that in the absence
of a magnetic field, transformations (1.2) leave Vlasov's equations
invariant. By means of these transformations, we can find, for example,
a nonstationary solution with a distribution function at the emitter
given by the expression

[ mlun— ] ())
i

Fy = Fyexp 1~ 0T (Fo - const)

which corresponds to the solution for a plane diode {27-30] with a
Maxwellian velocity distribution of the emirted particles #,
=Fyexp (—nuy® | 2ETY).
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